## KARTA PRACY 3.4. TRZECIA ZASADA DYNAMIKI

## ZADANIE 1.

Uzupełnij zdanie tak, aby było prawdziwe. Wybierz odpowiedź A lub B oraz 1. lub 2.
a)

| Sily akcji i reakcji <br> mają | A. ten sam kierunek, | taką samą wartość | 1. taki sam zwrot. |
| :--- | :--- | :--- | :--- |
|  | B. inne kierunki, | oraz | przeciwne zwroty. |

b)

| Siły akcji i reakcji | A. równoważą się, | ponieważ mają | 1. taki sam punkt przyłożenia. |
| :--- | :--- | :--- | :--- |
|  | B. nie równoważą się, |  | 2. różne punkty przyłożenia. |

## ZADANIE 2.

Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F - jeśli jest fałszywa.

| Ryba płynie ze stałą szybkością. Siła, z jaką ryba odpycha płetwami wodę, ma taką samą wartość <br> jak siła, z jaką woda odpycha rybę. | P | F |
| :--- | :--- | :--- |
| Ryba płynie ze stałym przyspieszeniem. Siła, z jaką ryba odpycha płetwami wodę, ma większą <br> wartość niż siła, z jaką woda odpycha rybę. | P | F |
| Ryba płynie ze stałym przyspieszeniem. Siła, z jaką ryba odpycha płetwami wodę, ma mniejszą <br> wartość niż siła, z jaką woda odpycha rybę. | P | F |

## ZADANIE 3.

Ziemia (Z) i Słońce (S) przyciągają się grawitacyjnie.
Wskaż, na której ilustracji prawidłowo przedstawiono oddziaływanie grawitacyjne między Ziemią i Słońcem.
rys. 1

rys. 2

rys. 4


A. rys. 1
B. rys. 2
C. rys. 3
D. rys. 4

## ZADANIE 4.

Na ilustracji przedstawiono siły $\left(\overrightarrow{F_{1}} \mathrm{i} \overrightarrow{F_{2}}\right)$ oddziaływania magnetycznego między dwoma magnesami $(A$ i $B)$.


Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F - jeśli jest falszywa.

| Siła, z jaką magnes $A$ działa na magnes $B$, to $F_{1}$. | P | F |
| :--- | :---: | :---: |
| $F_{1}=F_{2}$ | P | F |
| $F_{1}=-F_{2}$ | P | F |

## ZADANIE 5.

Uzupełnij zdanie tak, aby było prawdziwe. Wybierz spośród A-C oraz 1.-3.

| Podczas wystrzału <br> pocisku z armaty siła <br> odrzutu armaty ma | A. taką samą wartość jak | B. mniejszą wartość niż | siła wywierana na <br> pocisk, a przyspie- <br> szenie uzyskane <br> przez armatę jest |
| :--- | :--- | :--- | :--- | | 1. większe niż przyspieszenie |
| :--- |
|  | | 2. mniejsze niż przyspieszenie |
| :--- |
| pocisku. |

## ZADANIE 6.

Na fotelu leży kot. Wskaż stwierdzenia prawdziwe.
A. Suma sił działających na kota wynosi 0 .
B. Siła, z jaką kot naciska na fotel, jest zrównoważona przez ciężar kota.
C. Siła, z jaką fotel oddziałuje na kota, równoważy się z ciężarem kota.
D. Na kota działa stała, niezrównoważona siła wypadkowa.


## ZADANIE 7.

Na gładkim stole znajdują się dwa klocki o masach $m_{1}=1 \mathrm{~kg} \mathrm{i} m_{2}=0,5 \mathrm{~kg}$ połączone nicią (jak na rysunku) o zaniedbywalnej masie. Klocki wykonano z takiego samego materiału. Układ tych klocków został wprowadzony w ruch dzięki sile $\vec{F}$, której wartość wynosi $1,5 \mathrm{~N}$. Ruch układu odbywa się ze stałym przyspieszeniem, przy pominięciu sił tarcia klocków o stół. Kolorem czerwonym narysowano wektor siły $\vec{F}_{1}$, jaką drugi klocek oddziałuje poprzez nić na pierwszy klocek. Wartość siły $\overrightarrow{F_{1}}$ wynosi $0,5 \mathrm{~N}$.

a) Oblicz przyspieszenie, z jakim porusza się pierwszy klocek.


b) Uzupełnij zdanie.

Przyspieszenie, z jakim porusza się drugi klocek, ma wartość $\qquad$ $\frac{\mathrm{m}}{\mathrm{s}^{2}}$.
c) Na rysunku na poprzedniej stronie narysuj wektor siły $\vec{F}_{2}$, jaką pierwszy klocek oddziałuje poprzez nić na drugi klocek.
d) Uzupełnij zdanie.

Wartość wektora siły $\vec{F}_{2}$, jaką pierwszy klocek oddziałuje poprzez nić na drugi na klocek, wynosi $\qquad$ N.

## ZADANIE 8.

Akrobatka ustawiła się na nieruchomym trapezie - jak na zdjęciu. Masa akrobatki wynosi 55 kg .

a) Oblicz ciężar akrobatki.

b) Oblicz wartość siły, z jaką napinana jest każda z linek trapezu.

c) Uzupełnij zdanie.

Wartość wypadkowej siły działającej na akrobatkę wynosi N.

